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) ‘EQUtiiONSOF MOTION OF A ROCiET*
/1
!r By 1?.R. Gantmacher and L. M. Wvin
\
\
I The equations of motion of a rocket are given in general form;

a rocket is defined as an appamtus with a liquid or powder rocket
i motor.

1. TBIOREM OF

In considering the
only the state of those

MOMENTUM AND THEOREM OF MOMENTS

motion of the rocket, at each instant of time
material particles which at that instant are

wit~in the control surface passin& through the exterior surface of
the body of the rocket and the exit section of the nozzle shall be
included.

In order to obtain the equations of motion of the rocket, the
following procedure is used. An arbitrarY but fixed instant of time
is considered. A fictitious solid body is denotedby S with
mass m, which would be obtained if the rocket at the instant t
solidified and ceased giving off particles., The solid body S will
not be homogeneous; in some of its parts, it will have the density
of a metal and in other parts the density of a gas, and so forth.
It shall be assumed that the fictitious solid body S is invari-
ably fixed to the body of the rocket and from the instant t onwards
(instant of solidification)moves together with the rocket. The
momentum & the body S shall be denoted by Q.

The system ~ consisting of all the material pmticles that
at the insknt
be considered.
rocket, but at
the system Z
solid body S
at the instant

t entered the composition of the r&ket shall also
At the instant t the system X coincides with the
the succeeding instants certain of the particles of
will be outside the rocket. The system ~ and the
havw a constant mass equal to the mass of the rocket
of time t. The momentum of the system Z relative

o

*“Oh lJ~~nlakh Dvizhenia Rakety.” Prikladnaya ~tematika 1
Meldanika, Vol. XI, No. 3, 1947, pp. 301 - 312.
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to an @movable (more accvmately Galilean) system of coordinate axes
will be denoted by K. Let F = dK/dt be the principal vector of
the external forces acting at the instant t on the rocket (and
therefore on the system X ).

compare dK/dt and dQ/dt. The motion of each of the particles
of the system ,X shall be considered as compounded. A particle
moves relative to S (that is, relative to the body of the rocket)
but the solid body S is transported as a whole. For the absolute
relative and transport velocities, the notation Va, Vr, and Ve
shall be used. Similarly for the accelerations, the notation Wa,

wr> ZHld TTe is used. The Coriolis acceleration of the particle
shall be denoted by J.

It is noted that Vr is equal to zero for the particles of
the bodyl and for the particles of the powder, whereas wr is equal
to zero for the ~rticles of the body and those particles of the
powder, which at the given instant, do not lie on the combustion
surface. Then2

dK x dQ—=
dt

mwa .— - J +
dt E

mwr (1.1)

where J =~mj is the principal vector of the Coriolis forces
and

aQ=
dt I‘e

The relative velocity of the particle at the instant
tl = t + dt is denoted by Vti. For the elementary change ill

(a)

‘In the body are included all fixed particles of the rocket.

21nthe following discussion, the subscript i to denote ma@-
tudes relative to the particles will, for simplification,be omitted;
for example, vai and mi will be written as Ta and m, res-
pectively.

m
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velocity bvr
5vr = v~ - Vr

=------

(relativeto the body of the rocket)3,

= Wrdtj hence

F - v
(1.2)

The momentum relative to the body of the rocket at the instant t
of the Prticles of the gas a.tthat instant in the rocket is denoted
by Kr ‘aridthe momentm?-
particles of the gas4 in

‘z

relative to the body of the rocket of the
the rocket at instant t by Klr. NOW

81&=Klr-I&

zmvr
. Kr

1“

(1.3)

mvh = Klr + k#t

where krdt is the momentum (in the relative motion) of those ~r-
ticles of the gas, which in the time interval dt passed through the
exit section of the nozzle; ~ is the momentum relative to the body
of the rocket of the mass of gas passing per second through the
section of the nozzle or, as used herein, the momentum rate per
second relative to the body of the rocket; ?KT is the elementary
change of the relative momentum of the gas occupying a fixed volume
(within the control surface).

The vector ~ has the dimensions of a force.

The force kr is called the equilibrant of the reaction forces
or simply the reaction force.5~v=- dm/dt is the mass flow

3Here and in the folluwing discussions, the symbol 5 denotes the
differential (elementarychange) of the vector relative to the body
of the rocket. The elementary change relative to the initial system
of axes (fixed) is denoted by d.

%or a rocket with liquid reaction engine, the vector Kr is
the momentuu of the particles of gas in the combustion chamber and
nozzle and the particles of the liquid
pipes supplying fuel to the combustion

bIn the equivalent reactive force
certain external forces; these will be
section 2.

moving in the tanks and the
chamber.

there are often
considered more

included
in detail in
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per second find
flow of the gas
(1.2) and 6-.3),

Substitution
of the expression

NACA TM 1255

u (the average at the exit section),the velocity of
relative to the nozzle6 kr . VU. From equations
there is obtained

& r=
(1.4)

on the right side of equation (1.1) for ~mwr
from equation (1.4) and F for dK/dt yields

dQ 5Kr
fi=T

-kr+J-~ (1.5)

This equation expresses the momentum theorem for the solidified
rocket, that is, for the solid body S.

The kinetic moments of the system Z and the body S are now

considered.

me notation A, the kinetic moment of the system ~ ,
and L of the body S in the absolute motion, that is, in the
motion relative to the fixed system of the coordinate axes,are
introduced. Tne pole relative to which the kinetic moment is taken
is denoted by a subscript; thus, for example, Lc is the kinetic
moment of the body S relative to its center of inertia C and Acl
is the kinetic moment of the system relatiw to its center of
inertia Cl.

Together with the absolute motion, the motion relative to axes
passing through the point C and moving forward together with it
must be considered.7 The magnitudes referring to this motion shall
be denoted by a prime.

Similarly in considering the motion relative to axes passing
through Cl (the center of inertia of the system Z ) and having
a forward motion the correspondingmagnitudes will be denoted by
a d,oubleprime.

6H the rocket has sevemal nozzles, kr = 2~illij where vi
ie the gas flow of the i th nozzle and ui is the mean velocity
at the exit section of this nozzle. In the following discussion,
a rocket with a single nozzle is considered; this assumption does
not affect the generality of the results.

7The origin of this system of coordinate axes C is not dis-
placed relative to the body of the rocket.
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Applying the theorem of the moment of momentum relative to the
center of inertia to the system ~, there is obtained for the

& instant of time.,t
\

1

,,
%“

,. — = Gcl (1.6)
) dt

\ where G is the principal moment of all the external forces acting

~
on the r%ket (and therefore on the system Z ) at the instant of
time t.

It is noted that Ac” =AC’. For, in passing to another system ‘

of coordinate axes movi~ translationallyrelative to the first, there
is added to the velocities of all points of the system the same
velocity constant in magnitude and direction. The additional
momentums will be proportional to the masses and are in the same
directions. Hence, they reduce to a single equivalent resultant
vector applied to the center of inertia cl. The moment of this
additional momentum vector relative to Cl will be equal to zero.
Further

Acl’ - ‘ —=L’Lc” +CIC +K’

whence

%1’ tic’
T=— at +

becau= at the instant t the point Cl coincides with the
point C and

(1.7)

By noting that at the instant t the points Cl an: C
coincide and therefore Gcl . Gc and recalling that Acl = Acl’
there is obtained from equat&An~ (1.6) and (1.7)

+’Gc (1.8)

&&in the motion of each particle of the system ~ shall be
“consideredas compounded. The motion of the pmticle relative to the
axes moving forward together with the point C shail be considered
as absolute, the motion of the body S relative to these axes as the
transport motion, and fi~lly the ~tion of the Prticle ~~ti~e to

I
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the body S (that is, relative to the body of the rocket) as relative.
Then

Act = zr x mva

tic ‘

x= 2 rxmwa

where r is the radius vector of the prticle drawn from the point C.
The sun W~+We+j is substituted instead of the absolute accel-
eration of the particle and it is noted that.— .

zrxmwe

-1 rxmj

where He is the principal moment
obtained

a.L”
c=—

dt
) (1.9)

= Hc

of the Coriolis forces. There is

dAc’ dLc’
—=-w-dt

Hc+ ~rxmwr (1.10)

A@in let Vti be the relative velocity of the particle at the
instant tl . t + dt. Then v~ - Vr = Wr dt and therefore

It is noted that

2’rx

where ACr is the kinetic moment of
relative motion8 at the instant t.
moment of the gas at the instant of
by AICr. Further

mv~ -
zr x mvr

.Acr

(1.11)

(1.12) ‘

the gas within the rocket in the
The value of this kinetic
time tl is denoted

8See the previous note relative to Kr. The magnitudes ACr
like Kr refers not to the fixed mass but to a fixed volume
occupied by the gas.
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7

where rl is the radius
which at the instant t

From th’esum z
.ri

of the radius vector r.

vector at the instant tl of the particle,
had the radius vector r.

x mv~’y those components in which the end
extends beyond the limits of the rocket are

taken out. The sum of %hese componentswill be eqml to the kinetiic
moment per second of the gas through the exit section of the nozzle
in the relative motion 2rc multiplied by d-b.

The sum of the remaining components gives Alcr

Further the sum ~ rl - r) X mvw = O, because
??I.r = br = Vr dt and with an accuracy up to infinites-
imals v~ : Vr. Thus

s x mv~ = filcl’+2
rc

1

From equations (1.11), (1.12), and (1.13),

z
8%

rxmw .—
r dt

-1-Zrc

where ticr =Alcr -Acr is the elementary change
body:

By substituting in equation (1.10) in place of
expression from equation (1.14), there is obtained

13Ac’ dLc’ 8A r

—’rb
+ Zrc -He+-&

(1.13)

(1.14)

rObtive to the

the sum its

(1.15)

The kinetic moment of the gas per second in the relative motion
1 has the dimensions of the-moment of a force. The moment Zrc
i~ccalled the reactive moment? From equations (1.8) and (1.15), there
is obtained

ruc‘ &lr
—=G-2rc+Hc--&-
dt

(1.16)

/
Equation (1.16) determines the derivative with respect to time

of the kinetic moment of the solidified rocket S in its motion

‘In the reactive moment, there are often included additional
moments of certain external forces. See section 2.
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relative to axes passing through the center of inertia C of the
fo-d moving body S.

2. REACTIVE FORCES

The area of the exit section of the nozzle is divided into
elementary areas &Y. The mass pm? second flowing through the
area du i~ denoted by Vdfy and the relative velocity of the
gas passing through this’area by Vr. The mass of gas per second
passing through the exit section of the nozzle will then
he w = ~vdu, where the summation is taken over all the
elements @ of the exit section.

The vector - VdUvr, having
considered. This force is called
It originates in the particles of
rocket through the area @. The
tary reactive forces is equal to
relative to the pole C is equal

the dimensions of a force, are
the elementary reactive force.
the gas separating from the
prticipal vector of the elemen-
- kr} and the principal moment
to - 2rc where ~ and 2rc

are the momentums per second and kinetic moment of the gas rel~tive
to the body of the rocket.

In the system of reactive forces there are, however, often
included certain external forces, namely, those arising from the
atmospheric pressure on the body of the rocket and from the pressure
of the issuing parts of the gas on those rematiing in the rocket,
and additional forces due to the unsteady motion of the gas. This
phenomenon is made clear by the following considerations.

The combustion in the rocket apparatus is assumed to be at
standati conditions with the rocket immovably fixed. In this case

where F* and G*C
moment of the forces
external part of the

.

Q =0 Hc = .0

LCI = o F =F*+lW

J=O Gc = GC* + GC*

are the principal vector and the principal
of the atmospheric pressure and pressure of the
gas on the exit section of the nozzle.
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From equations (1.5) and (1.6), thenl”

-F*= 68-kr+lW— —
at
5Ar

-G =-2rc+GG* ---&
*G

In measurements on the test stand there are generally cleter-
mined the pressure forces of the rocket on the supports. These
pressures are characterizedby the principal vector -F and the
principal moment -G*C, which include in addition to the purely
reactive forces the additional forces and moments F*, GC*,

-5Kr/dt, -tire/dt●

In the following discussion into one system shall be com-
bined: (1) the purely reaotive forces, (2) the forces arising
from the atmospheric pressurell and the pressure of the external
part of the gas (issuingfrom the rocket jet), and (3) the addi-
tional forces due to the nonsteadi.nessof the motion of the gas
in the rocket. All these forces will be included in the system
of reactive forces. The principal vector of these forces -F*
is denoted by T and the principal moment -G*C by ~. Then

T=- kr + F*
5Kr

-x

)

(2.1)
WC

Mc=-Zrc+Gc*-=

Generally in computing the reactive force T and the reactive
moment Mc the third components in equations (2.1), that is,
=bKr/iit anti Wc/dt are neglected.12

l“It is here assiimedthat the flow of the gas in the chamber and
nozzle for the moving and stationary rocket is the same. This
assumption is equivalent to neglecting the effect of the acceleration
of the rocket on the relative motion of the gas~

llBy the forces of the atmospheric pressure is meant the forces
due to constant atmospheric pressure on the external surface of the
rocket at standard conditions.

12That is, the motion of the gas in the rocket is considered as
quasi-stationary.
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3. FINAIIl?OIMWliTIO?J OF THE FUNDAMENTAL

SOLIDIFICATION

liACATM 1255

THEOREMS. IIRINCIl?LEOF

From the number of external forces were separated the forces
arising from the uniform atmospheric pressure and the pressure 0$
the external gas, which were included (section 2) in the system of
reactive forces. These forces have the principal vector F* and
the principal moment GC*. The principal vector and the principal
moment of the remaining external forces are now denoted by F
and G.

With this notation, the equation of the change of momentum (1.5)
and the equation of the kinetic moment for the solidified rocket (1.16)
ass~e the form

aQ=F+w 88
dt

-~+J-~

dLc ‘ 6Ac’-
—. Gc+Gc*-Zcr+Hc-T
dt

By introducing these equations the reactive force T and the
moment Mc according to equations (2.1), there is finally obtained

aQ=F+T+J
dt

U!

—=GC+MC+HC
d; }

(3.1)

From these equations the following principle of solidification is
obtained.:

The equations of motion of a rocket at an arbitrary instant of
time t may be written in the form of the equations of motion of
a solid body of constant mass if it is assumed that the rocket became
rigid and solidified at the instant of time t (that is, ceased to
give out particles) and that to the fictitious solid body thus
obtained there were applied: (1) external forces acting on the

rocket, (2) reactive forces, and (3) Coriolis forces.



_.—

NACA .3?41255

4. SECOND DERIVATION

>-. .

OF @HE EQUATION OF

~ MOMENTS,..

11

MOMENTUM AND THE EQUATION

An infinitely small interval & time dt is considered and the
elementary increments, for this interval, M dK and dQ the momen-
tum of the System ~, and the solid body S are com~red.

For this purpose, the volyme oocupied by therocket is
divided into three parts: (1) the volume occupied by the body,
(2) the volume occupied at the instant t by the powder (or liquid)
fuel, and (3) the volume occupied at the instant t by the ~rtioles
of gas in the rocket. The pwts of the momentum referring to these
volumes are denoted by the subscripts 1, 2, and 3, respectively.

Evidently for

The pcnrderis

but at the instant

by the momentum of
time interval dt.
form k=dt where

the body,

~=dQ1 (4.1)

next considered. At the instant t, K = Q2;
tl = t + dt the vector K2 dMfers #rcm Q2

the elementary mass of powder that burned in the
This deficiency of momentum is presented in the
k~ .isthe momentum expenditure per second of

J? .-.

the powder. Then15 “

~ = d% - kpdt (4.2)

by
The volume of the ~rt of the rocket occupied at the instant t

the gas is ncfwconsidered. The momentum of the pafiicles of gas

13The momentum of the gas occupyi~at the instant tl the volume

of burned pawder after dt seconds is not considered here. The
ratio of this momentum to the value k&t is equal to the ratio of
the density of the gas to the dqmsity of the powder and is very small.
ThUS by ~, the e~nd.iture per second of the momentum of the powder
multiplied by 1 - c is lulown. For the rocket with liquid
fuel ~ =d~ - kpdt + dlCOr where KOr is the momentum of the

liquid fuel relative to the motion and
5

the consumption
per second of the momentum of the fuel in the tmnsport motion mul-
tipliedby 1 - C, where 6 is the ratio of the density of the
fuel vapors to the density of the fuel itself.
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in this yolume relative to the body of the rocket is denoted (as in
section 1) by Kr. The corresponding increment is dKr, where the
dtiferential d takes account of the vector relative to the sta-
tionary system of coordinates. But then

dx?=t&+ux Irdt

where 5Kr is the elementary change of the vector Kr relative to
the body of the rocket and (0 is the angular velocity of the body.

The increment of momentum of the gas in the volume considered
in the transport motion is now considered. This increment agrees
with dQ3 in the case where at each point af the volume considered
the density of the gas p at the instants t and tl is the same.
In the general case, however, it is necessary to take into account
also the change in
required increment

where the integral
at the instant t

density P. Hence, in the general case the
in the transport motion is equal to

dQ3 +

“l\

%t vedfat

is extended over that part of the volume w that
is occupied by the gas, Ve is the transport

velocity of the element of volume dT, and ~p/& is the rate of
change of the density p in the given volume element dT. Hence

s!!

~=dQ3+ $ dtvedT + bKr +(o X ~ dt (4.3)

The increments in the momentum of the particles within the
volwe of the rocket have been considered. In computing dK,
however, it is necessary to take into account also the moment at the
time tl of those particles, which in the interval from t

to tl = t + dt passed through the exit section of the nozzle.

This momentum is equal to (ke + &)dt where ke is the rate of
expenditure per second of the momentum of the gas through the exit
section of the nozzle in the transport motion and ~ in the
relative motion. Thus

dK =dK1+~+~+(ke+~)dt
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Substituting ~, ~~ and ~ from equations (4.1), (4.2)

and (4.3), respectively, there is obtained

!11

%tv dT (4.4).,.. dK ‘dQ-(~-’ke- k#t+MF+wfdt+ at
e

As before, the principal vector of the forces of the atmospheric
pressure and the pressure of the external ~rt of the gas on the
rocket is denoted by F* and the princi~l vector of the remaining
external forces by F. According to the momentum theorem for the
system Z mc~at=F +F* and therefore from equation (4.4)
there is ob~ained 14

dQ F bd+k-k--kr+F*-a

Sll

apv dT-6)xd (4.5)
a= Pe, at e

where the last term - x Kr represents half the Coriolis force J.
Hence, by taking equations (2.1) into account,equation (4.5) can be
reduced to the form

~=~+~+~-k N *V ~T+l
dt

~J (4.6)
Pe- >t e

Similar considerationspermit obtaining the equation of moments
fitc

=Gc+~+zcpWOxAcr - m ap
w r’ x vet —dT

at
(4.7)

where

is the
of the
in the
moving

z~p is the kinetic moment of the powder per second and Zce

Icineticmoment of the gas per second through the exit section
nozzle. In both cases, there is considered the kinetic moment
transport motion of the body relative to a system of axes
forward together with the center of inertia C of the body S.

14This equation holds also for the liquid fuel rocket. In this
case, however, Kr is the momentum of the gas and the fuel in their
relative motion.

1-—,-,.-.,,,,,, ..,,,,,, , , ,..,,,,,.,! !!!! I . .,, , , In .Imm. . !.. !.! 1.. . ...!.. -----—— ..--! — —.
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5.

the
are

EQUATION FOR THE MOMENTUM, CORIOLIS FORCE, AND CORIOLIS MOMENT

By comparing equations (4.6) and (4.7) with equations (3.1),
equations for the Coriolis force J and the Coriolis moment H.
obtained:

u

J=+’-’m;<”) ‘5”1’
X r’ x vet d’f(5.2)HC=Z -2’eC-(0 X&r-Cp‘ at

These equations are evidently sim lified if the density of the
Bdoes not vary with time, that is, ~p t = O. (This equation holds

the quasi-stationarymotion of the gas in the rocket.)

gas
for

The expressions (5.1) for J are first considered. The mass of
powder expended per second (or what amounts to the same thing, the
addition of the mass of gas) is denoted by P1 and the mass of gas
per second through’ the exit section of the nozzle by V2. Then
evidently

h-~2=2\\\@T=\\\$.. (53)
Further, k=dt represents the momentum of an elementary mass

of powder pldt

inertia of this

the velocity of

by Vcp. Then

P
burning in the interval of the dt. The center of

elementary mass of powder is denoted by C and

the point CP in the transport motion of %he body
kp = Vlvcp.

If it is assumed that the elementary mass of powder Vldt is

symmetricallyplaced relative to the axis of the rocket, the point
c will lie on this axis.
P

If the mass pldt is symmetricalwith

respect to the mean section of the powder containers, C will be in
the plane of this section. P

In
through
By Ce

by Vce

the same manner, the elementary mass of es p2dt ~ssi~

the exit section of the nozzle in time dt is considered.
the center of inertia of this elementary mass is denoted and
the transport velocity of this center. Then ke = p2vce.
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If the gas passing through the exit section is symmetrical, the
point Ce lies on the center of the exit section of the nozzle.

By rp and re the radii vectors of ,thepoints CP
and Ce,

respectively, drawn from any pole O fixed to the body are denoted.

Let r denote the ’radiusvector of an arbitrary point within
the rocket. By using the expression for the velocities of the points
of a solid body,

.

Vcp =vo+@xrp

‘co =vo+(oxre

1

(5.4)

Ve = vo+(oxr )

On the basis of these equations and the eqwtions kp . Vlpcp

and ke = P2 ‘ce9 equation (5,1), taking account of equation (5.3),
assumes the form

J= -2(OX .2%-l%+\\@r.T) (5.5)
(

By comparing this equation with the usual expression for the
Coriolis force J = - 2hl x Kr and taking into account the arbi-
trariness of the vector 0, there results

Kr

!!1

+rdt
= p2re - vlrp + at

(5.6)

where Kr is the momentum of the gas in the rocket in its motion
relative to the rocket and the integral on the right side is
extended over the entire volume W occupied by the gas.

Equation (5.6) is of a general character.~ It determines the
momentun of the gas (or liquid) enclosed in the given volume in the

15Equations (5.6) and (5.2) for Kr and Hc canbe obtained
directly if the derivatives are computed with respect to time of the
integrals

\\’j‘h \\(‘x(MXr)ti

taken over the mass occupying the given volume at the time t.
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ease where the incoming and outgoing masses w
k

and Vz of the gas
through the surface bounding this volume and t e pr second change in
density at each point of the volume are given. In this equation, rp
is the radius vector of,the center of inertia of the incoming mass per
second V1 and re the radius vector of the outgoing mass V2.

The particular case where apfit 2 0 (for example the quasi-
stationarymotion of a gas, the arbitrary motion of an incompressible
liquid16, and so forth) is considered. In this case according to equa-
tion (5.3), there is VI = p2 . y where for the case of the rocket

v = dm/dt. If the vector b = CeCp “isintroduced, equation (5.6)
and the equation for J become

ti=~b J=-2Uxhz=-2~@xb) (5.7)

Equation (5.2) for the Coriolis moment Hc is now considered.
E it is assumed that ~p/& = O and that the equivalent vector of
the momentum of the particles of gas in their relative motion passes
through the center of inertia C, that is, ACr =0, equation (5.2)
becomes

Hc

For example, the case
considered. The moment of

‘Z’pc - “ec

of plane-parallelmotion of the rocket is
inertia of the body relative to the eciua-

torial axis passing through the point C and-perpenflicularto tie
plane of the motion is denoted by I. The moment of inertia of the
mass of powder burned in dt seconds will then be equal to -dI.
Hence the kinetic moment of this mass will be

On the other hand, the kinetic moment (in the translational
motion) of an elementary mass of the gas passing through the exit
section in time dt will be -dm re2@ where re = we. Thus

16 In this case there is the e=ct equation.



—

NACA TM 1255 17

6. EQUATION OF hKITIONOF THE CENTER OF INERTIA OF THE ROCKET

Froh the principle of solidificationfor the instant of time t,
there results

where m is
acceleration
at time t,

‘c =F+T+

the mass of the rocket at
of thecenter of inertia
that is, of the body S.

J (6.L)

instant t and Wc is the
C of the solidified rocket

During the combustion of the fuel, huwever, the center of
inertia of-the rocket is displaced relatin to the body. The motion
of the center of inertia of the rocket relative to the initial
(fixed) system of coordinates canbe represented in the form of a
compound motion in which the center of inertia moves relative to the
body (relativemotion) and the body of the rocket moves relative to
the fixed system of axes (transportmotion). Then Vc and Wc
are the transport velocity and accele~tion and ‘cr and Wcr the
relative values. The absolute velocity and the accelemtion of the
center of inertia are determined from the equations

V = Vc + Vcr

w =Wc+Wcr+2Uxvcr

Determining from the second equation Wc and substituti~ in
equation (6.1), there is ob-tainedthe equation of motion of the center
of inertia of the rocket.

mw =F+Ti-J+wcr+ 2mMx~cr (6.2)

The expressions for the magnitudes Vcr and Wcr shall be
found. The body of the rocket may here be considered as fixed. Let
the point O of the body of the rocket be taken as the initial
and C and C! the position of the center of inertia of the rocket
at the instant t and t! = t + dt. Then for the moments of the
tties t and t~, there results

~c =
!!!

p (t) r d?

(m + dm) rc’ =

S!l

p(t+dt)rdT
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where rc =UC, rc~ =UC’ = rc +5rc, and P is the density of the
elementary volume of the rocket. The integration is extended over
the entire volume of the rocket (including the body).

By subtmcting the first relation from the second and neglecting
the terms of the second-order smallness,

dmrc+mbrc

whence it follows that

&c

‘Vcr = m ~

i.q rp + s!!~dtrd?=-
at

N( 2J3rdT= p2 rc -~lrp+
at

JJJ
or on the basis of equation (5.6)

‘Vcr = P2 (rc - re) +&

By differentiating the equation (6.3),

&2 r

- vz~cr (rc -
+ ‘cr = W2vcr ‘~ re) + ~

or
aJ2 5Kr

‘cr = 2Y2vcr + ~ (rc - re) +=

(6.3)

(6.4)

In the quasi-stationary case ap/at z’ o, p2 = pl =“p,
bKr/dt s O, ~2/& ~ (), and equations (6.3) and (6.4) assume the

form

The computations conducted by these equations show that the mag-
nitudes ‘cr and Wcr are negligibly small in comparison with the

mean velocities and the accelerations on the activk part of the

.
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trajectory. Hence in equation (6.2), the term mwcr may be neglected
in comparison with the reactive thrust T. The term 2mM x vcr is
generally
order as

7.

BY

of the same order as J because ‘c - rp I is of

re I- rp. ,

EQUATIONS OF THE ROTATIONALMOTION OF TEE ROCKXT

tiertia of the rocket, by 11,
inertia of the rocket relative
the projections of the angular
axes.

the same

denoted principal central axes of
12, - -and Is the”moments of
to these axes, by p, q, and r
velocity of the body (I) on these

It is first assumed that the directions of the axes of iner-
‘ia ~ , q, and ~ are fixed relative to the body during the
entire ‘timeof combustion. ‘Unisnatural assumption is always made
for rockets because it is assumed that at all times the axis of the
rocket is one of the principal axes of inertia and the two other
principal axes of inertia may be arbitrarily chosen in the plane
pe.rpendiCUl.arto the axis of the rocket.

Under the assumptj.onmade, the principal axes of inertia of the
~olidifiedrocket, that is,of the body S, will at all tties be
~parallelto the axes ~ , v, and C. The correspondingmoments of
inertia for the body S will have constant values equal to the
values of the moments of inertia II, 12, and 13 of the rocket
at the instant of time t. It follows that p, q, and r are the
projections of the angular velocities of the solid body S on the
principal central axes of inertia of this body. Hence, making use
of the principle of solidification,the three equations of the rota-
tional motion can be written in the form of Euler17

17Here and in the following discussion, the pn?entheses after
each equation indicate that two other equations are obtained hy
cyclical interchange of the letters and subscripts in the paren-
theses.

I —
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where N
t

is the sum

the external reactive
.a~” N .

t

of the moments relative to the axis ~ of all

and Coriolis forces and similarly for NV

The three equations (7.1) together with the three scalar equa-
tions of motion of the center of inertia constitute a system of six
equations, which detemines the motion of the rocket.

For completeness, the general case when the principal central
axes of imertia change their directions relative to the body of the
rocket shall be considered.

By ~’, rj’, and C ‘ the directions of the principal axes
of inertia of the body S is denoted, that is, the directions fixed
relative to the body and coincidingwith the directions
and ~ at th~,;tij,,t.

E, v,
The projections of the angular velocity @

on the axes and ~’ are denotedby p’, q’, and r’
respectively. Applying the principle of solidification,for the
moment of time t

11&+ (13-12)q’r’=N5 ( g, q, 1; 1, 2, 3; P, q, r)

(7.2)

where N~ ‘ is the sum of the projection of the external reactive

and Cori;lis forces on the axis ~‘,
angular velocity of the trihedron ~q~
the rocket is denoted. Let dU/dt be
relative to the body of the rocket and
relative to the axes ~v~ . Then

and so forth. By fi the
relative to the body of
the derivative of the vector
5W/dt the derivative

(7.3)

The projections of
and ~ ‘ are equal to
jections of the vector

the vector d6.)/dton the axes ~j, ~~,
dp‘/dt, dq’/dt, and drt/dt. The pro-
&d/dt on the axes ~, n, and ~ are

equal to dp/dt, dq/dt, and dr/dt. Because”at-~he instant t
the directions ~’, q’, and ~ r coincide with the directions

V9 and C for this instant of time, from equation (7.3)

(f, ,q, t;p, q,r)

(7.4)
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It is noted that p~ . p, q! = q, and rf = r at the”
instant t. Substituting in equation (7.2) in place of dp‘/dt,
dqt/dt,” and drt/dt their expressionsfrom equation (7.4)
there is finally obtained.,,

5 11~ +(13- I2) qr+Il (~r -~~q) =N~

‘}

(7.5)

(g} TI$t; 1, 2,3; P, q,r)

where Q
4

%-p and ~ must be considered as known functions
of the t- ~. c
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